Induced Collagen Cross-Links Enhance Cartilage Integration
نویسندگان
چکیده
Articular cartilage does not integrate due primarily to a scarcity of cross-links and viable cells at the interface. The objective of this study was to test the hypothesis that lysyl-oxidase, a metalloenzyme that forms collagen cross-links, would be effective in improving integration between native-to-native, as well as tissue engineered-to-native cartilage surfaces. To examine these hypotheses, engineered cartilage constructs, synthesized via the self-assembling process, as well as native cartilage, were implanted into native cartilage rings and treated with lysyl-oxidase for varying amounts of time. For both groups, lysyl-oxidase application resulted in greater apparent stiffness across the cartilage interface 2-2.2 times greater than control. The construct-to-native lysyl-oxidase group also exhibited a statistically significant increase in the apparent strength, here defined as the highest observed peak stress during tensile testing. Histology indicated a narrowing gap at the cartilage interface in lysyl-oxidase treated groups, though this alone is not sufficient to indicate annealing. However, when the morphological and mechanical data are taken together, the longer the duration of lysyl-oxidase treatment, the more integrated the interface appeared. Though further data are needed to confirm the mechanism of action, the enhancement of integration may be due to lysyl-oxidase-induced pyridinoline cross-links. This study demonstrates that lysyl-oxidase is a potent agent for enhancing integration between both native-to-native and native-to-engineered cartilages. The fact that interfacial strength increased manifold suggests that cross-linking agents should play a significant role in solving the difficult problem of cartilage integration. Future studies must examine dose, dosing regimen, and cellular responses to lysyl-oxidase to optimize its application.
منابع مشابه
Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking.
The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effect...
متن کاملNondestructive fluorescence-based quantification of threose-induced collagen cross-linking in bovine articular cartilage.
Extensive collagen cross-linking affects the mechanical competence of articular cartilage: it can make the cartilage stiffer and more brittle. The concentrations of the best known cross-links, pyridinoline and pentosidine, can be accurately determined by destructive high-performance liquid chromatography (HPLC). We explore a nondestructive evaluation of cross-linking by using the intrinsic fluo...
متن کاملCollagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.
Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking...
متن کاملCollagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues.
The concentration in collagen of hydroxypyridinium cross-linking amino acids was measured in samples of bone and cartilage from human subjects aged from 1 month to 80 years. Cortical and cancellous bone samples were dissected and analysed separately. In both bone and cartilage, the content of this mature form of cross-link reached a maximum by 10-15 years of age (the amount in cartilage being 5...
متن کاملTemporal Changes in Collagen Cross-Links in Spontaneous Articular Cartilage Repair
OBJECTIVE: Little is known about how the biochemical properties of collagen change during tissue regeneration following cartilage damage. In the current study, temporal changes in cartilage repair tissue biochemistry were assessed in a rabbit osteochondral defect. DESIGN: Bilateral full thickness 3mm osteochondral trochlear groove defects were created in 54 adult male skeletally mature New Zea...
متن کامل